Try to refine the log things.

This commit is contained in:
zicla
2018-11-29 16:06:22 +08:00
parent ce46076867
commit fcdcf6da60
2 changed files with 63 additions and 68 deletions

431
rest/util_cache.go Normal file
View File

@ -0,0 +1,431 @@
package rest
import (
"errors"
"fmt"
"log"
"sort"
"sync"
"time"
)
//缓存项
//主要借鉴了cache2go https://github.com/muesli/cache2go
type CacheItem struct {
sync.RWMutex //读写锁
//缓存键
key interface{}
//缓存值
data interface{}
// 缓存项的生命期
duration time.Duration
//创建时间
createTime time.Time
//最后访问时间
accessTime time.Time
//访问次数
count int64
// 在删除缓存项之前调用的回调函数
deleteCallback func(key interface{})
}
//新建一项缓存
func NewCacheItem(key interface{}, duration time.Duration, data interface{}) *CacheItem {
t := time.Now()
return &CacheItem{
key: key,
duration: duration,
createTime: t,
accessTime: t,
count: 0,
deleteCallback: nil,
data: data,
}
}
//手动获取一下,保持该项
func (item *CacheItem) KeepAlive() {
item.Lock()
defer item.Unlock()
item.accessTime = time.Now()
item.count++
}
//返回生命周期
func (item *CacheItem) Duration() time.Duration {
return item.duration
}
//返回访问时间。可能并发,加锁
func (item *CacheItem) AccessTime() time.Time {
item.RLock()
defer item.RUnlock()
return item.accessTime
}
//返回创建时间
func (item *CacheItem) CreateTime() time.Time {
return item.createTime
}
//返回访问时间。可能并发,加锁
func (item *CacheItem) Count() int64 {
item.RLock()
defer item.RUnlock()
return item.count
}
//返回key值
func (item *CacheItem) Key() interface{} {
return item.key
}
//返回数据
func (item *CacheItem) Data() interface{} {
return item.data
}
//设置回调函数
func (item *CacheItem) SetDeleteCallback(f func(interface{})) {
item.Lock()
defer item.Unlock()
item.deleteCallback = f
}
// 统一管理缓存项的表
type CacheTable struct {
sync.RWMutex
//缓存表名
name string
//所有缓存项
items map[interface{}]*CacheItem
// 触发缓存清理的定时器
cleanupTimer *time.Timer
// 缓存清理周期
cleanupInterval time.Duration
// 该缓存表的日志
logger *log.Logger
// 获取一个不存在的缓存项时的回调函数
loadData func(key interface{}, args ...interface{}) *CacheItem
// 向缓存表增加缓存项时的回调函数
addedCallback func(item *CacheItem)
// 从缓存表删除一个缓存项时的回调函数
deleteCallback func(item *CacheItem)
}
// 返回缓存中存储有多少项
func (table *CacheTable) Count() int {
table.RLock()
defer table.RUnlock()
return len(table.items)
}
// 遍历所有项
func (table *CacheTable) Foreach(trans func(key interface{}, item *CacheItem)) {
table.RLock()
defer table.RUnlock()
for k, v := range table.items {
trans(k, v)
}
}
// SetDataLoader配置一个数据加载的回调当尝试去请求一个不存在的key的时候调用
func (table *CacheTable) SetDataLoader(f func(interface{}, ...interface{}) *CacheItem) {
table.Lock()
defer table.Unlock()
table.loadData = f
}
// 添加时的回调函数
func (table *CacheTable) SetAddedCallback(f func(*CacheItem)) {
table.Lock()
defer table.Unlock()
table.addedCallback = f
}
// 删除时的回调函数
func (table *CacheTable) SetDeleteCallback(f func(*CacheItem)) {
table.Lock()
defer table.Unlock()
table.deleteCallback = f
}
// 设置缓存表需要使用的log
func (table *CacheTable) SetLogger(logger *log.Logger) {
table.Lock()
defer table.Unlock()
table.logger = logger
}
//终结检查,被自调整的时间触发
func (table *CacheTable) checkExpire() {
table.Lock()
if table.cleanupTimer != nil {
table.cleanupTimer.Stop()
}
if table.cleanupInterval > 0 {
table.log("Expiration check triggered after", table.cleanupInterval, "for table", table.name)
} else {
table.log("Expiration check installed for table", table.name)
}
// 为了不抢占锁采用临时的items.
items := table.items
table.Unlock()
//为了定时器更准确我们需要在每一个循环中更新now不确定是否是有效率的。
now := time.Now()
smallestDuration := 0 * time.Second
for key, item := range items {
// 取出我们需要的东西,为了不抢占锁
item.RLock()
duration := item.duration
accessTime := item.accessTime
item.RUnlock()
// 0永久有效
if duration == 0 {
continue
}
if now.Sub(accessTime) >= duration {
//缓存项已经过期
_, e := table.Delete(key)
if e != nil {
table.log("删除缓存项时出错 ", e.Error())
}
} else {
//查找最靠近结束生命周期的项目
if smallestDuration == 0 || duration-now.Sub(accessTime) < smallestDuration {
smallestDuration = duration - now.Sub(accessTime)
}
}
}
// 为下次清理设置间隔,自触发机制
table.Lock()
table.cleanupInterval = smallestDuration
if smallestDuration > 0 {
table.cleanupTimer = time.AfterFunc(smallestDuration, func() {
go table.checkExpire()
})
}
table.Unlock()
}
// 添加缓存项
func (table *CacheTable) Add(key interface{}, duration time.Duration, data interface{}) *CacheItem {
item := NewCacheItem(key, duration, data)
// 将缓存项放入表中
table.Lock()
table.log("Adding item with key", key, "and lifespan of", duration, "to table", table.name)
table.items[key] = item
// 取出需要的东西,释放锁
expDur := table.cleanupInterval
addedItem := table.addedCallback
table.Unlock()
// 有回调函数便执行回调
if addedItem != nil {
addedItem(item)
}
// 如果我们没有设置任何心跳检查定时器或者找一个即将迫近的项目
if duration > 0 && (expDur == 0 || duration < expDur) {
table.checkExpire()
}
return item
}
// 从缓存中删除项
func (table *CacheTable) Delete(key interface{}) (*CacheItem, error) {
table.RLock()
r, ok := table.items[key]
if !ok {
table.RUnlock()
return nil, errors.New(fmt.Sprintf("没有找到%s对应的记录", key))
}
// 取出要用到的东西,释放锁
deleteCallback := table.deleteCallback
table.RUnlock()
// 调用删除回调函数
if deleteCallback != nil {
deleteCallback(r)
}
r.RLock()
defer r.RUnlock()
if r.deleteCallback != nil {
r.deleteCallback(key)
}
table.Lock()
defer table.Unlock()
table.log("Deleting item with key", key, "created on", r.createTime, "and hit", r.count, "times from table", table.name)
delete(table.items, key)
return r, nil
}
//单纯的检查某个键是否存在
func (table *CacheTable) Exists(key interface{}) bool {
table.RLock()
defer table.RUnlock()
_, ok := table.items[key]
return ok
}
//如果存在返回false. 如果不存在,就去添加一个键并且返回true
func (table *CacheTable) NotFoundAdd(key interface{}, lifeSpan time.Duration, data interface{}) bool {
table.Lock()
if _, ok := table.items[key]; ok {
table.Unlock()
return false
}
item := NewCacheItem(key, lifeSpan, data)
table.log("Adding item with key", key, "and lifespan of", lifeSpan, "to table", table.name)
table.items[key] = item
// 取出需要的内容,释放锁
expDur := table.cleanupInterval
addedItem := table.addedCallback
table.Unlock()
// 添加回调函数
if addedItem != nil {
addedItem(item)
}
// 触发过期检查
if lifeSpan > 0 && (expDur == 0 || lifeSpan < expDur) {
table.checkExpire()
}
return true
}
//从缓存中返回一个被标记的并保持活性的值。你可以传附件的参数到DataLoader回调函数
func (table *CacheTable) Value(key interface{}, args ...interface{}) (*CacheItem, error) {
table.RLock()
r, ok := table.items[key]
loadData := table.loadData
table.RUnlock()
if ok {
// 更新访问次数和访问时间
r.KeepAlive()
return r, nil
}
// 有加载数据的方式就通过loadData函数去加载进来
if loadData != nil {
item := loadData(key, args...)
if item != nil {
table.Add(key, item.duration, item.data)
return item, nil
}
return nil, errors.New("无法加载到缓存值")
}
return nil, errors.New(fmt.Sprintf("没有找到%s对应的记录", key))
}
// 删除缓存表中的所有项目
func (table *CacheTable) Flush() {
table.Lock()
defer table.Unlock()
table.log("Flushing table", table.name)
table.items = make(map[interface{}]*CacheItem)
table.cleanupInterval = 0
if table.cleanupTimer != nil {
table.cleanupTimer.Stop()
}
}
//辅助table中排序统计的
type CacheItemPair struct {
Key interface{}
AccessCount int64
}
type CacheItemPairList []CacheItemPair
func (p CacheItemPairList) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p CacheItemPairList) Len() int { return len(p) }
func (p CacheItemPairList) Less(i, j int) bool { return p[i].AccessCount > p[j].AccessCount }
// 返回缓存表中被访问最多的项目
func (table *CacheTable) MostAccessed(count int64) []*CacheItem {
table.RLock()
defer table.RUnlock()
p := make(CacheItemPairList, len(table.items))
i := 0
for k, v := range table.items {
p[i] = CacheItemPair{k, v.count}
i++
}
sort.Sort(p)
var r []*CacheItem
c := int64(0)
for _, v := range p {
if c >= count {
break
}
item, ok := table.items[v.Key]
if ok {
r = append(r, item)
}
c++
}
return r
}
// 打印日志
func (table *CacheTable) log(v ...interface{}) {
if table.logger == nil {
fmt.Println(v...)
return
}
table.logger.Println(v...)
}
var (
cacheTableMap = make(map[string]*CacheTable)
cacheTableMutex sync.RWMutex
)
//统一管理所有的缓存表,如果没有就返回一个新的。
func Cache(table string) *CacheTable {
cacheTableMutex.RLock()
t, ok := cacheTableMap[table]
cacheTableMutex.RUnlock()
if !ok {
t = &CacheTable{
name: table,
items: make(map[interface{}]*CacheItem),
}
cacheTableMutex.Lock()
cacheTableMap[table] = t
cacheTableMutex.Unlock()
}
return t
}